Rating
4.8/5

# Assignment help 1413

“#1. Let A = (1, 2) and B = (2,?3) be points in the upper half-plane model. (As complex numbers A = 1 + 2i and B = 2 + i?3.)a) Find the ‘endpoints’ E1 and E2 of the hyperbolic line that contains A and B.b) Draw a sketch of the hyperbolic line that contains A and B.c) Compute the cross ratio (E1,A;B,E2).d) Find the hyperbolic distance dhyp(A,B).#2. Again, let A = (1, 2) = 1 + 2i and B = (2,?3) = 2 + i?3. Let T be the transformationT(z) = ?1/za) Compute the images T(A), T(B).b) Plot the points T(A) and T(B), and sketch the hyperbolic line that passes through them.c) Compute dhyp(T(A), T(B)); check that this distance matches your result in 1d).

## Why US?

##### 100% Confidentiality

Information about customers is confidential and never disclosed to third parties.

##### Timely Delivery

No missed deadlines – 97% of assignments are completed in time.

##### Original Writing

We complete all papers from scratch. You can get a plagiarism report.

##### Money Back

If you are convinced that our writer has not followed your requirements, feel free to ask for a refund.